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We investigate a renormalization group (RG) scheme for avalanche automata 
introduced recently by Pietronero et al. to explain universality in self-organized 
criticality models. Using a modified approach, we construct exact RG equations 
Ibr a one-dimensional model whose detailed dynamics is exactly solvable. We 
then investigate in detail the effect of approximations inherent in a practical 
implementation of the RG translbrmation where exact dynamical inlbrmation is 
unavaihtble. 
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1. I N T R O D U C T I O N  

Since its in t roduct ion almost  a decade ago, ~|  the phenomenon  of  self- 
organized criticality (SOC)  has been widely studied A variety of  theoretical 
models have been shown to display SOC behavior: that  is, their dynamics  
naturally evolve to a complicated self-sustaining state in which avalanches 
of  all sizes are observed. Most  of  this work  has focused on identifying (via 
computer  simulations) what  properties are necessary to achieve SOC, 
determining various critical exponents,  and exploring whether universality 
classes exist. Experimentally,  increasing at tention has been paid to physical 
systems which exhibit well-defined avalanche events, and there is mount ing  
evidence thht some of  these show S O C  (e.g., refs. 2). Some theoretical effort 
has been devoted to going beyond simulations, and several distinct 
approaches  have been followed. These include algebraic analysis of  Abelian 
models, <3~ derivation of  a macroscopic  singular diffusion equat ion from an 
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underlying microscopic dynamics, c41 and a scaling theory tbr "extremal 
dynamics" encompassing a variety of avalanching systems. ~ 51 

Recently, Pietronero, Vespignani, and Zapperi (PVZ) conceived a 
real-space renormalization group theory for SOC .61 and explicitly 
implemented the procedure on systems in two dimensions. Their theory 
explains the existence of universality classes and also allows explicit 
calculation of certain exponents characterizing the avalanche distribution. 
While there is still some debate about the proper characterization of SOC 
universality classes, ~7" 81 PVZ managed to compute the avalanche exponents 
to impressive accuracy. 

The purpose of the present paper is to investigate further the renor- 
malization group approach in the spirit of PVZ. We consider a class of 
one-dimensional cellular automaton models whose dynamics can be solved 
exactly, which allows us to (i) construct explicitly exact renormalization 
group equations and (ii) investigate in detail the approximations inherent 
in practical implementation of the renormalization group transformation. 

An important point is that the validity of the RG approach does  n o t  

require  the existence of power law distributions: it is much more powerful. 
Indeed, the exactly solvable models we consider in this paper display linear 
avalanche distributions, and though technically a power law, this case is 
usually viewed as "trivial" in the context of SOC. Nevertheless, the RG 
approach allows one to calculate (in principle) the complete avalanche 
distribution regardless of its functional form. An analogous statement is 
true in applying RG in equilibrium statistical mechanics: most attention is 
paid to the critical point, but the technique is equally applicable away from 
it.c 9~ 

2. B A C K G R O U N D  

2.1. Renormal izat ion Group Approach 

In this section we briefly review the real space renormalization theory 
of  PVZ. ~6) That work gives a framework for understanding universality in 
SOC models and a procedure for determining theoretically the avalanche 
distribution. PVZ explicitly constructed a renormalization transformation 
for a fairly general class of systems in two dimensions, which predicts that 
different microscopic models correspond to the same coarse-grained model, 
which is itself scale-invariant and characterized by power law distributions, 
e.g., 

P ( s )  ~ s  I - *  (2.1) 
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where s is the number of sites affected in a single avalanche, and P(s) is the 
probability that at least s sites are involved. Such power-law distributions 
are a defining feature of SOC systems. The PVZ theory predicts a universal 
value of r = 1.253, which is in good agreement with values determined from 
large computer simulations of two distinct models: r = 1.22 for the original 
sandpile model of Bak, Tang, and Wiesenfeld (BTW)J ~' ~ and r = 1.28 for 
the two-state model introduced by Manna. ~m PVZ therefore explain at 
once the commonality of the exponents (an indication of universality) and 
calculate this exponent theoretically, without need for simulations. PVZ 
explicitly focus on two-dimensional models; however, it is clear how to 
apply their ideas to systems in any number of dimensions. 

The specific steps of the PVZ theory are as follows. First, one defines 
a space of models so that different models correspond to distinct points in 
the space. The coordinates in this space are probabilities specifying the 
relaxation rule. (The analogous situation in traditional critical phenomena 
is the space of spin-Hamiltonians with coordinates given by the set of 
coupling constants.) Next, a renormalization operator is defined which 
relates the dynamics described at one scale to its coarse-grained analog. 
Application of the renormalization operator induces a discrete map on the 
space of systems; a fixed point of this map corresponds to a perfectly scale- 
invariant model. The properties of the fixed point are directly related to the 
avalanche distribution exponents. 

For example, consider systems defined on a two-dimensional square 
lattice (the case explicitly implemented by PVZ). The space of probabilities 
p~ is defined as the probability that a critical site at scale k will relax by 
dropping grains to j neighbors ( j  = 1, 2, 3, 4). In the BTW model, critical 
sites decay by spilling one grain to each of their four nearest neighbors: this 
is the dynamics at the microscopic level (designated scale k = 0 )  and so 
(p~, pO, pO, pO)=(0, O, O, 1). In the Manna model the relaxation rule is 
different: critical sites decay by spilling two grains, one grain each to two 
randomly chosen nearest neighbors, so (pO pO o o _ P3 ,  P4)  = (0 ,  1, 0, 0) .  

The next step is to define a renormalization transformation as follows. 
A cell consisting of four sites is used to calculate the probability that the 
cell will relax to j neighboring cells in terms of the microscopic pO. For 
each cell configuration, one writes p) in terms of the pO by summing over 
all possible "paths, then takes a weighted average over all cell configura- 
tions. This last step involves a crucial element of the PVZ theory, namely 
an additional parameter p which represents the fraction of critical sites and 
is itself determined by enforcing "energy balance." Physically, the idea is 
that any given (coarse-grained) cell must have on average as many grains 
flowing out as flowing in; otherwise, the system is not in the steady state 
(i.e., not on the attractor). 
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In this manner one determines the renormalization equations giving 
(p) ,  p ' )  in terms of (pO, pO). This readily generalizes to give (p)+ ', pk+ .) 
in terms of (p~, pk). 

PVZ actually show how the (coarse-grained) avalanche distribution 
can be constructed from any trajectory (p~, pk); the special case of a fixed- 
point trajectory corresponds to an exact power-law distribution. For  
systems on a two-dimensional square lattice, they find an attractive fixed 
point at (p, p) = (0.240, 0.442, 0.261, 0.057, 0.468), which corresponds to a 
power-law avalanche distribution with 3 =  1.253. Both the BTW and 
Manna models are in the basin of attraction of this fixed point, and thus 
should exhibit this distribution except at the shortest length scales. 

We now turn our attention to a simpler cellular automaton which we 
can solve exactly. We will see that an exact renormalization transformation 
does not require the imposition of "energy balance"; this is automatically 
satisfied on the attractor. The coarse-graining procedure of PVZ neglects 
site-site correlations inherent in the steady state, and the extra balance 
condition serves to compensate in part for the neglected correlations. 

2.2. A Simple  1D Cellular A u t o m a t o n  

The first exactly solvable model we consider is the BTW model in one 
spatial dimension. By "exactly solvable" we mean that we have complete 
and explicit knowledge of the attracting dynamics. In particular (i) we can 
enumerate all stable configurations on the attractor and (ii) for each con- 
figuration we can predict precisely the result of dropping one grain on any 
site. The price we pay is that this model does not exhibit "true SOC"; that 
is. the avalanche distribution is a linear function and although technically 
this is a power law (with r = - 1 ), traditionally the model is considered too 
simple to qualify as SOC. For our purposes this is not a problem: indeed, 
it is just this simplicity that allows us to find an exact solution, which in 
turn lets us understand in detail the renormalization procedure. 

On a lattice of length L, we call hi the number of grains at site j. We 
choose a random site d and drop a grain on this position 

ha ~ h a +  1 (2.2) 

If ha exceeds a threshold value h,, the site relaxes by passing one grain each 
to the left and right, 

h a ~ h a - 2 

h , l + l - * h j + _ l  + l 
(2.3) 
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which can of course destabilize the neighboring sites. The updating is 
performed in parallel, The relaxation process continues, with updating 
performed in parallel (i.e., all relaxing sites are updated simultaneously), 
until all sites are stable, at which time the avalanche is finished. Another 
grain is then added at a randomly selected site, and so on. The boundary 
conditions are such that sand leaves the system on both ends. The 
attracting dynamics is independent of the threshold value; we set h,. = 1. 

Although not obvious, the above algorithm leads to relatively simple 
dynamical behavior, which can be completely characterized as follows. 
There are precisely L +  1 recurrent (stable) states.-" These are the con- 
figurations having at most one site with h = 0 and all other sites h = 1. We 
call the h = 0  site a trap site; the importance of a trap site is that an 
avalanche cannot propagate past it. ~-'1 Starting from any of these L +  1 
states, a grain can be dropped on any of the L sites, giving a total of 
L ( L +  1) possible avalanches to consider. These fall into three groups: (i) 
if the initial state is the no-trap state) then the avalanche extends 
throughout the system (and so has size L) and a single trap is created; 
(ii) if the initial state has a trap and the drop occurs on the trap, there is 
no avalanche and the resulting state is the no-trap state; (iii) if the initial 
state has a trap site, but the drop occurs elsewhere, the avalanche extends 
from the trap on one side to the system boundary on the other and a new 
site becomes the trap. 

We can summarize the net effect after dropping on site d by a single 
rule' ~2. t3~ 

ha --', h a -  1 

h, ._a+l --* h , . - , l + t -  1 

h , . -*  h, .+ l 

(2.4) 

hl ~ hl + l 

where r and l denote the trap site to the right and left of the drop site at, 
respectively,, with the convention that l = O  if there is no trap to the left 
and r =  L + 1 if there is no trap to the right. The rule (2.4) represents an 
exact solution to the dynamical system, and its importance lies in its 
role in allowing us to deduce exact results, including construction of an 
exact renormalization group transformation in the next section. It is a 

2 This can also be determined by direct calculation of tile determinant of tile toppling matrix, 
following DharJ ~ 
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straightforward matter to derive the exact avalanche distribution, with 
result 

1 / (L+ 1) for n = 0  

f ( n ) =  2n/L(L+I) for l ~ < n ~ < L - 1  (2.5) 

1 / (L+ l) for n = L  

where f (n)  is the probability that an avalanche affects exactly n sites. 

3. A RENORMALIZATION THEORY FOR 1D AUTOMATA 

In this section, we construct a renormalization approach similar to 
PVZ, but with some differences which allow us to exploit our exact 
knowledge of the dynamics. Applied to the l d BTW model, we generate 
exact renormalization equations which recover, for example, the avalanche 
distribution (2.5). We then show how a natural approximation which 
ignores site-site correlations affects the results, and how enforcement of a 
"balance condition" can partially compensate. In Section 4 we extend our 
results to a family of models. 

3.1. Probability Amplitudes 

Following PVZ, we begin by defining a space of systems with differing 
relaxation behavior. A cell consisting of s contiguous sites can be excited in 
two distinct ways, depending on whether or not it contains the drop site 
(which initiates the avalanche), and we explicitly distinguish between 
these. 3 We denote by Dj the event where, given that the initial drop site is 
in the cell, the subsequent avalanche eventually affects j distinct nearest 
neighbors ( j = 0 ,  1, 2). We then let @j(s) be the probability that a Dj event 
occurs, and refer to these probabilities as the "drop amplitudes"; of course 
~c~(s) + ~ ( s ) +  ~2(s)= 1. We likewise denote by TJ the event where, given 
that the initial drop site is not in the cell (and so the cell is initially excited 
by a "spillage" from a neighboring cell), the cell propagates the avalanche 
to exactlyj  distinct nearest neighbor cells. Finally, we let ~ ( s )  be the prob- 
ability that a T~ event occurs, with ~ ( s ) +  ~ ( s ) +  ~_~(s)= 1. We will refer 
to these as "transport amplitudes." As it happens, for our ID model ~ ( s )  
is identically zero. Consequently, we have five amplitudes, which are con- 
strained by the two normalization conditions, defining a three-dimensional 
space of systems. It is in this space that the renormalization group operator 
acts. 

Keeping track of this difference is one of the ways that our construction differs from PVZ. 
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Our next step is to write ~ and ~ explicitly in terms of L and s. We 
can use (2.4) to construct a probability tree for the drop amplitudes, which 
generates all possible sequences of events after a drop onto a cell. We 
obtain (see Appendix) 

1 
No(S) = (3.1a) 

L + I  

s - 1  
Nl(s) - (3.1b) 

L + I  

L + l - s  
N2(s)= L + 1 (3.1c) 

It is easy to see that these are correct at the fundamental scale s = 1 of the 
1D BTW model: No(l) is the probability that the drop site is a trap, and 
a given site is a trap in precisely one of the L + 1 stable configurations; 
N t (1 )=0 ,  since the rule (2.3) never allows spillage to just one neighbor; 
N2(1 ) is the probability, that the drop site is not a trap. 

To construct the transport amplitudes, note that once an avalanche 
begins elsewhere, a cell either stops the avalanche (if it contains a trap site) 
or the avalanche propagates through the cell (if it contains no trap site). 
But exactly s of the L + 1 stable configurations have a trap in a given cell 
of size s, so 

S 
~o(S) = (3.2a) 

L + I  

L+l--s  
~ ( s )  (3.2b) 

L + I  

From these amplitudes we can calculate the avalanche distribution. 
Let P(a <s )  equal the probability that an avalanche affects fewer than s 
sites. There are two ways that an avalanche can fail to propagate beyond 
a cell of size s: (i) the drop cell relaxes with a Do event or (ii) the drop cell 
relaxes via a D~ event, but the cell happens to be adjacent to the system 
boundary and the transported grain simply spills out of the system. These 
alternatives are mutually exclusive, so 

P(a<s)= @o(S) +(L) N,(s) (3.3) 

822/86/5-6-19 
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Using (3.1), we get 

P(a<s)=L+I+L ~ (3.4) 

which agrees with (2.5) for all s~< L, as it must. 

3.2. Exact Renormalization Equations 

We now carry out a coarse-graining procedure. We look at two adja- 
cent cells of size s and seek to write ~j. and 9-~'j for this composite cell in 
terms of the unprimed probabilities at scale s. For example, in calculating 
~ ,  we consider the combinations of ~. and ~ which lead to no spillage 
out of the two-cell block (see Fig. 1). We obtain 

~ = @o + �89 n To) (3.5) 

where the first term represents the path where the dropped grain happens 
to land on the trap, and the second one that where the drop caused an 
"internal" spill, which, however, fails to propagate through the composite 
cell; the latter involves the joint probability of two consecutive events 
(denoted by the symbol n ). This joint probability can be reexpressed as 
the product 

PROB(D, n To) = ~ �9 PROB( To tD, ) (3.6) 

where PROB(To[DI) denotes the conditional probability that a To event 
occurs, given that a D I event precedes it. For this model, this term is zero 

D. 

(~)D, To 

Fig. I. Example of the renormalization scheme. The filled circle represents a critical (but 
stable) site; the additional ring denotes a supercritica] site which must then relax. Shown are 
the two dynamical paths for which no grains spill out of the composite cell, corresponding to 
the two terms for the composite amplitude @~. 
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(!)D, T, 
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~/ D. > 

Fig. 2. The three dynamical paths generating ~]. 

since both events require a trap, and there are no configurations on the 
attractor with two traps. Therefore, 

1 
~ = ~o = (3.7) 

L + I  

In a similar way we calculate ~'~ (see Fig. 2), 

@'~ = PROB(D2 n To)+ �89 + �89 n T~) 

= @,. PROB(To ID2) + �89 + �89 PROB(T, ID,) 

= .O_,(s). :-o(S, L - s )  + �89 + �89 �9 1 (3.8) 

where the notation 9-~j(s, L - s )  denotes the corresponding expression (3.2) 
with the substitution L ~ L - s .  [That  P R O B ( T o l D 2 ) = ~ ( s , L - s )  
follows, since a D2 event requires no trap in the cell, i.e., that the t r a p I i f  
any--must  lie among the remaining L - s  sites.] Similarly, we have 

@~_ = PROB(D2 n Tl ) = ~2 "~3-]1(s, L - - s )  (3.9) 

In a like manner we can renormalize the ~ .  Since an avalanche either 
stops at the first cell in the block of two or propagates and stops at the 
second, we have 

~--~ = Yo + PROB(TE n To) 

= Jo(S) + 9](s) �9 ~o(S, L - s) (3.10) 
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Lastly, 

J-'l = PROB(TI n T~) 

=N(s) .N(s, L - s )  (3.11) 

Equations (3.7)-(3.11) give the five coarse-grained amplitudes _@~ and ~-"i. 
If the renormalization is exact, then the coarse-grained amplitudes for com- 
posite cells should be identical to the original amplitudes evaluated at cell 
size 2s, i.e., [~=  (0j(2s) for any amplitude ~.. This is readily verified using 
expressions (3.1) and (3.2). 

We make one more observation. On the attractor, the number of 
grains entering any cell must on average equal the amount leaving it. In 
terms of two of the amplitudes this "balance condition" can be written (see 
Appendix) 

J o =  1 -@2 (3.12) 

Notice that this condition is automatically satisfied; cf. Eqs. (3.1) and (3.2). 

3.3. Approx imate  Renormal izat ion 

The exact results (3.7)-(3.12) make intimate use of our complete 
knowledge of the dynamics: we enumerated all recurrent configurations 
and all possible avalanches connecting them. Said differently, we use global 
information about the dynamics on the attractor, which is crucial for 
getting exact results. In contrast, PVZ use only local dynamics, which 
inevitably throws out information. Despite its approximate nature, 
however, a local construction is preferred as a practical matter since exact 
global knowledge is not typically available. Of course, not any local 
construction will do: it must be quantitatively accurate. 

Armed with our exact solution, we can investigate in some detail what 
happens when global knowledge of the attractor is ignored and how the 
resulting approximations can be improved. In particular, without informa- 
tion about correlations we cannot evaluate exactly the joint probabilities 
PROB(O~ c~ Oj) in (3.7)-(3.11). The most straightforward approach is to 
ignore correlations altogether and write PROB(O~ c~ Oi) ~ G "~i, in which 
case we obtain 

= �9 s %  + + �9 

(3.13a) 

(3.13b) 
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(3.13c) 

(3.13d) 

(3.13e) 

When iterated, the above equations diverge from the exact solution. This 
divergence can be corrected to some degree by imposing the balance condi- 
tion (3.12) at each iteration step. For example, at each iteration we deter- 
mine the ~ amplitudes using (3.13), then impose the balance constraint 
(3.12) to determine ~ '  o, and finally use normalization (i.e., .~-~ + ~-"~ = 1) 
to determine #--'t. 

Figure 3 compares the renormalization of the drop and transport 
amplitudes for three different schemes: using the exact equations, using the 
approximate equations (3.13) directly without concern for balance, and 
finally using the approximate equations for the drop amplitudes with 
balance determining the transport operators as just described. This last 

1.25 ' 

1 . 2 '  
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1.05 
c 

~ 0 ; r 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2  ." , : , 2 4 6 8 t o  12 ~4 
1 2 3 4 5 6 7 8 9 10 I 1 1 2 1 3 1 4  15 
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I . . . .  = o ~ x 
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0.65 . . . . . . . . . . . . . . . .  
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Fig. 3. Comparison of the probability amplitudes generated in the two approximate R G  
r (exa~: l )  ~r maps. Plotted are ~j/~j , w i t h  .~ determined using the approximate RG equations (D), 

and the balance-augmented RG equations t x ) (s. = 2 k). 
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Fig. 4. Comparison of P(a <s), obtained using exact RG equations ( [] ), approximate RG 
equations ( �9 ), and the balance-augmented RG equations ( A ). 

approach  amoun t s  to using (3.12) to el iminate the t ranspor t  opera to r s  
f rom (3.13). Explicitly, this yields the following map:  

~c(~ + ' ' -  N~ok' + �89 1 -  -- .  ~ " )  _ (3.14a) 

I (;T~lk) I c~/1 k )  6~ (/,.'1 ~ k + ~ = . @ ~ k l ( 1  _ ~ ~ ) +  5 ~j, + 5 ~ ,  ~ 2  (3.14b) 

~*-  + I I _ o?l*)~A-~ (3.14c) 
- -  ~ 2  " ~ 2  

where we impose  normal iza t ion  after each iteration. 
Figure 4 shows the cor responding  results for the predicted avalanche 

distribution. Using the probabi l i ty  ampli tudes  from Fig. 3, we evaluate  
(3.3) to get P(s<a). 

4. A F A M I L Y  OF M I X E D  M O D E L S  

The 1D B T W  model  cor responds  to a par t icular  point  in the three- 
dimensional  system space, namely  

( * L 1 ) _ _  
(@~ N2' ~'~J) = L+I'L+I'L+[ 

So far we have focused on how the renormal iza t ion  equat ions  act on this 
initial condit ion;  we have investigated only a single t rajectory in the space. 
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We now generalize to a family of 1D models. Each member of the family 
corresponds to a different initial condition for the renormalization transfor- 
mation. These models still behave simply enough that we can solve exactly 
the dynamics on the attractor. We present exact renormalization equations 
which can be used to derive the avalanche distribution, and then compare 
this with approximate renormalization equations with and without 
enforcing a balance condition. 

4.1 .  T h e  M o d e l  

The generalized model differs only in the relaxation rule, which 
depends on a single parameter q. On a lattice of length L, we choose a ran- 
dom site d and drop a grain on it by letting h a ~ ha+ 1. When the height 
becomes greater than h,. = 1, the site relaxes as follows. With probability q, 
the rule is (2.3) 

h , / ~  h a - 2 

h,/_+l ~ha_+t + 1 
(4.1) 

With probability (1 - q ) / 2 ,  it relaxes according to 

h a ~ h  a -  1 

h,/+l ~ h a + l + l  
(4.2) 

and with probability (1 - q ) / 2 ,  it relaxes according to 

hd---~ h , / -  1 

ha_l ~ h j _ l + l  
(4.3) 

Once the avalanche has started, the same relaxation rule is applied for the 
remainder of the avalanche, until all sites are stable. We then repeat the 
process. The 1D BTW model corresponds to the special case q =  1. In 
Fig. 5, we plot the avalanche distribution obtained from simulations of this 
"mixed rule" for q = 0.95. 

In fact, for any value of q > 0 the recurrent configurations are just as 
before: a static pile either contains one or no traps. We can see this since 
the net effect of (4.2), (4.3) is simply to fill in a trap or propagate off the 
system boundary. This fact is useful in the derivation of the results below. 
Unlike the q =  1 case, however, the trapless configuration recurs more 
frequently than any of the one-trap configurations. 
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Fig. 5. Avahmche distribution P(a) for the generalized model with q=0.95. 

We now express the operators ~j and J j  explicitly as functions of q, s, 
and L. Following the same procedure as before--generating all possible 
paths--we obtain the analogues of (3.1) (see Appendix): 

s - 1  
(4.4a) 

,44U, 

,44 , 

where p, =-2qL/(L+ 2q+Lq) is the probability that a given stable con- 
figuration contains a trap. Of course, these equations reduce to (3.1) in the 
q = 1 limit. 

To find the transport amplitudes, note that an avalanche propagates 
through a cell if either (i) the configuration contains no trap or (ii) the con- 
figuration contains a trap, but the trap is not in the given cell. Conversely, 
an avalanche is stopped if the trap exists and is in the cell. Therefore 

S 
~o(s) = p, ~ (4.5a) 

~-](s)=(l-p,)+p,(~E -) (4.5b) 
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Expressions (4.4) and (4.5) can be checked by direct comparison with 
simulations: the agreement is excellent. 

Our next step is to relate the drop and transport amplitudes to the 
avalanche distribution. For the generalized model this expression involves 
three terms rather than only two for the q = 1 case [cf. (3.3 ], 

(') P(a<<.s)=~o(S)(S)+ ~ ~ l ( s ) +  1 -  PROB(D n T o )  (4.6) 

In the earlier model, an avalanche failed to propagate beyond the com- 
posite cell if either (i) the drop site was a trap or (ii) the drop cell was a 
boundary cell and relaxed via a D~ event. But the generalized model admits 
another path, corresponding to the last term in the above expression, 
whereby the drop cell is a nonboundary cell (probability 1-2s /L  for 
s< L/2) and the relaxation sequence is D~ followed by To. The probability 
of having this last term is zero if q = 1. 

To evaluate the joint probability PROB(D~ c~ To), we can consider the 
two mutually exclusive cases 

PROB(DI n T o ) = P R O B ( D I n T o c ~ I ) + P R O B ( D I  ~ T o c ~ 2 )  (4.7) 

where "1" and "2" denote that the (randomly chosen) relaxation rule 
involves one or two grains, respectively. Of course, this second case is 
precisely the situation in the earlier model: both D~ and To events require 
traps and so that term is zero. On the other hand, 

PROB(D I n To c~ 1 ) = PROB(D I n 1 n To) 

~ P R O B ( D I  n 1).J% 

= ( l - q )  l - p ,  3o (4.8) 

where we have used the fact that PROB(D~ c~ 1) corresponds to the second 
term of Eq. (4.4b). 

The above considerations finesse one technical point associated with 
coarse graining: the path D~ n To actually contributes to avalanche sizes 
from s = 1 all the way up to 2 s -  1, whereas we want only the fraction f 
which accounts for avalanches of size s or less. We can account for this by 
taking 

Z;~. = i k s-" 
f=x-z ,~- - l~  3 s Z - 3 s +  1 (4.9) 
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Fig. 6. Comparison of P(a<<.s) for the generalized model with q=0.95. Direct simulation 
( [] ) and theoretical results ( x ). 

which assumes a linear avalanche distribution, consistent with simulations. 
Putting this all together yields 

p(a<~s)=@o(s)+ ~,(s)  -~ ( I - q )  1-p , - -~- j~(s )  

(4.10) 

Figure 6 compares (4.10) with the avalanche distribution obtained 
from direct simulations for q = 0.95. The agreement is excellent. 

4.2. Renormal izat ion Equations Appl ied to the Mixed  Model  

The RG approach gives us an alternative way to calculate the 
avalanche distribution. In fact, though presented in the context of the pure 
case q = 1, the RG equations (3.13) are equally valid for the mixed model. 
Recall that these were derived ignoring site-site correlations; as before we 
can try to compensate for this by imposing a balance condition appropriate  
for the generalized model: 

which is automatically satisfied on the attractor in the exact treatment (see 
Appendix A2). 
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Fig. 7. Comparison of P(a<s) with q=0.95,  obtained using exact RG equations (1_7), 
approximate RG equations ( • ), and the balance-augmented RG equations ( ~ ) .  

Figure 7 shows the avalanche distribution for the model with q = 0.95. 
Shown are the results of direct simulations, together with the derived 
results (4.10) and those determined via the RG map (3.13) both with and 
without imposing the balance condition (4.11 ). (The balance-corrected RG 
map is generated precisely as in Section 3.) The shown behavior is typical 
of that found for other values of q. 

5. S U M M A R Y  AND CONCLUSIONS 

In this paper we implemented a real-space renormalization group 
scheme for a class of cellular automaton avalanche models in one spatial 
dimension. These relatively simple models are well suited for exploring the 
RG framework, since they are exactly solvable in the dynamical systems 
sense. This allowed us to construct (in one case) an exact RG transforma- 
tion and to explore the effect of practical approximations in some detail. 

Although primarily motivated by the work of Pietronero, Vespignani, 
and Zapperi for two-dimensional systems, our scheme involved modifica- 
tions which allowed us to exploit our complete knowledge of the dynamics 
on the attractor. An important aspect of the PVZ theory is that the RG 
approach allowed us to reconstruct the (size) avalanche distribution inde- 
pendent of 'whether  or not the distribution happens to be a power law. 
Indeed, for our purposes the functional form is a minor detail, though of 
course it is a significant issue for the larger study of self-organized criticality. 

One of our main results was to clarify the role of the "balance condi- 
tion" in the renormalization scheme, which in the PVZ theory is a central 
element, yet enters in a somewhat ad hoc way. We saw that in an exact 
treatment, balance is automatically satisfied; it does not need to be 
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imposed as an auxiliary condition. Its role is to compensate, in a rough 
way, for site-site correlations automatically ignored in deriving the RG 
transformation. Said differently, imposing balance is a way to differentially 
weight various microscopic configurations--in the language of dynamical 
systems theory, it amounts to preferentially weighting configurations lying 
on the phase-space attractor, which is the only part that determines the 
steady-state behavior. This viewpoint is different from (and perhaps com- 
plementary to) the one forwarded by PVZ, who interpreted the balance 
condition as providing a nonlinear feedback mechanism directly respon- 
sible for the self-organization in these systems. 

Although our view is that the balance condition is not fundamental, 
because it is an automatic consequence of the attracting dynamics, we also 
emphasize that it is absolutely crucial in a practical sense. This is because 
we almost never have complete global dynamical information necessary to 
construct the attractor. Instead, a balance condition is a straightforward 
way of including at least one piece of global information about the 
attractor. In this way the RG approach becomes a practical tool for 
studying the statistics of these avalanching systems. 

We note that still more can be done with these 1D models. In par- 
ticular, the description embodied by Eq. (2.4) is valid not only on the 
attractor, but during the transient evolution as well. It would be very inter- 
esting if the RG picture could be broadened to include the transient 
approach to the final attractor, a process at the heart of the self-organizing 
aspect of self-organized criticality. 

Also of interest is the fundamental issue of whether the RG picture can 
be reconciled with the nonuniversal behavior observed in certain avalanche 
models, such as the mass-conserving Abelian models on decorated lattices ~ ~4~ 
and nonconserving models. ~8~ Perhaps not, but in principle it is possible. 
Although discrete maps have isolated fixed points, a map can have an entire 
line of fixed points, which would correspond to a continuous range of critical 
exponents. The RG map studied in this paper does not, but a generalization 
to a higher dimensional phase space might have this property. [The addi- 
tional coordinate(s) might distinguish, e.g., different decorations or the 
degree of nonconservation.] If so, identifying the special property or sym- 
metry responsible for the degenerate fixed-point structure would be a key 
step toward a comprehensive theory of these avalanching systems. 

APPENDIX 

A1. Probability Amplitudes ~j(s) 
Define S as the set of sites in a cell of size s. Without loss of generality, 

we set l =  0 and r = t, so that the drop site d is always to the left of the 
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Fig. 8. 

p, 

Do 

D2 

D, 

2 

Probability tree for the I D BTW model. 

trap t. If we drop on a site other than the trap, (2.4) gives the new trap site 
t ' = t - d .  

To keep track of all possible paths generated from dropping a grain 
onto S (d~S), we construct the tree shown in Fig. 8. At each level of the 
tree, beginning with the node at the top, one may choose any branch, each 
representing a distinct event in the relaxation history of the composite cell 
S. Every complete path terminates at one of the roots: the labels 9o, 9~, 
and 92 denote that a path ending at a particular root contributes to that 
particular drop amplitude for the composite cell. From Fig. 8 we see that 
there are four distinct paths, two contributing to ~2 and one each to 9o 
and 9t .  We have 

9 o  = p ,  " p.,. " P a  

9 t  = p ,  " Ps  "P,~ 

9 2 = p ,  " p . , . + p ,  

(A1) 

where p, is the probability of a trap being present anywhere in the system 
just before the drop, p.,. is the probability that, given that a trap exists, the 
trap is in S, and Pa is the probability that the dropped grain falls on the 
trap site, given that a trap exists and t ~ S. The overbar denotes negation, 
i.e., p, denotes the probability that a trap does n o t  exist prior to a drop. 

On the attractor, there are L stable configurations with one trap and 
one configuration with no traps. All L +  1 configurations have equal 
weight, so that 

number of trap configurations L 

P ' -  number of configurations - L  + 1 
(A2) 
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Fig. 9. Probability tree for the generalized model. 

The trap can be in any cell with equal likelihood, so 

size of cell s 
P~ = length of lattice = L (A3) 

The probability of dropping on it is then simply 

p a =  1/s (A4) 

Combining Eqs. (A1)-(A4) yields the quoted result, Eq. (3.1). 
For the mixed model the relevant tree (Fig. 9) has an extra level; the 

top-level nodes q and q represent the likelihood that the relaxation rule is 
(4.1) or (4.2), (4.3), respectively. Define p,, as the conditional probability 
that, given q, p,, p.,, and P-7~, the transported grain propagates in the direc- 
tion of the trap site; by symmetry p,, =~-~,, = 1/2. 

Since d is random, p.,.=s/L and Pd = 1Is as before; however, the 
trapless site occurs more often, so that p, is different. Leaving p, undeter- 
mined for now (see below), we calculate the drop amplitudes by summing 
over the relevant paths in Fig. 9, with result 

s-1 @o=p,(1)+(1-q)P~(-~ -) 

@~=qp,(~Ll)+(l_q)(1 (s+l)P,)2L (as) 
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A2. The Balance Condition 

First consider the pure model (q = 1). A cell gains a grain, with prob- 
ability Pg, if either (i) a trap exists, the trap is in the cell, and we drop on 
the trap; or (ii) a trap exists and the trap is in the cell, the drop is not on 
the cell, and the new trap is not  in the cell: 

P.~ = P, l P., " Pa + P, �9 P.,. "Pa'P, '  (A6) 

where p,, is the probability that the new trap t' is in the cell. Since t and 
t' are uncorrelated, p , = p , ,  and so from (A2)-(A4) we find 

s L - s +  1 
P " - L  L + I  (A7) 

Next, a cell loses a grain with probability P / i f  either (i) a trap exists, 
the trap is not in the cell, and the new trap t' is in the cell; or (ii) a trap 
does not exist and t' is in the cell: 

P I =  P, "-P-7" P,' +-~, " P , ' -  
s L - s +  1 

L L + I  
(A8) 

Note that P . , = P ~ ,  so that balance is automatically satisfied on the 
attractor. 

To express the balance equation in terms of the ~. and ~ ,  note first 
that Jo is just the probability that t ~ S. Define ~o as the probability that 
t '~  S; then ~ ) =  ~o, since t and t' are uncorrelated. Now, the cell gains a 
grain only if both t E S and t '~ S, so that 

P~ = ~o( 1 - ~o) = ~)( 1 - ,~o) (A9) 

The cell loses a grain it suffers a D2 event and t ' e  S: 

P, = ~2~o = -@2~o (Al0) 

Setting P~ = P/yields  

9~o = 1 - ~2 (A l l )  

in agreement with (3.1) and (3.2). 
For  the generalized model, P.~ is the weighted sum of two disjoint 

cases: (i) relaxation occurs according to (4.1) with weight q, in which case 
(6) gives the probability, or (ii) the relaxation occurs according to 
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(4.2)-(4.3) with weight ~, in which case the ceil gains if a trap exists and 
t ~ S, and the propagation is toward S. Thus 

P~ = q(P, P ~  �9 Pd+ P, " P.,. "Pa "if;r) + ( 1 -- q)(p ,  . p.~ �9 p,.) 

1 ( s - 1 ) ( L - s )  s I 
=qP'  L L 2 + ( 1 - q )  P'  L 2 (A12) 

Meanwhile, since rule (4.2) never leads to a loss of sand, P/ is just the 
product of the weight q and (A11 ), 

P , = q ( p ,  . ~ .  p,. + ~ .  p,,) 

L - s s  s 
= q p , - - - ~ - ~ +  (1 - p , ) ~  (A13) 

Setting P e = P~ yields 

2Lq (A14) 
P ' - L  + 2 q + q L  

and comparison with the expression for @2 in (A5) suggests the apparent 
analogue of (3.12): 

1 
~ =  1 - - ~  2 (A15) 

q 

Note that (A14) and (A5) imply ~ 2 / q ~  I as q--, 0. 
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